
Secondary Battery Clad Lead Tap

Make your future with CSC's advanced materials

1 Angular Can

② Cylindrical Can

Al

The Strength of CSC Battery Clad Tap

1. Tolerance Control

Management of thickness deviation accurately by cold rolling experience over 20 years in cladding.

2. Slitting Technology

Minimize the tolerance of width & burr by accurate slitting & optimized process for Ultra thin materials

3. Homogeneous Heat Treatment

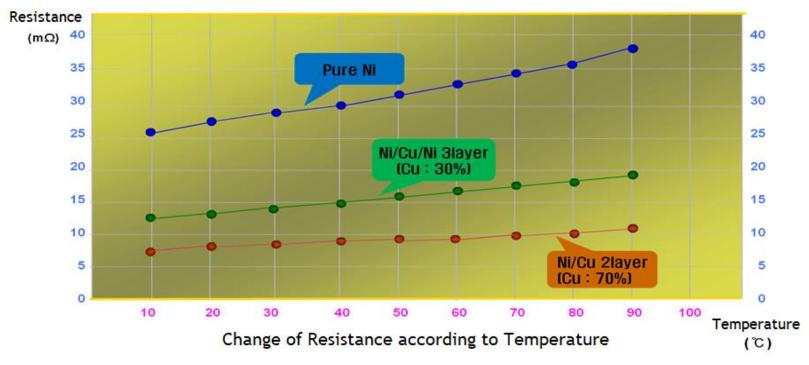
Homogenous quality by continuous Reel-to-Reel heat treatment

4. Foreign Substance Control

Near to Zero foreign substances by clean management

5. Cost Effective by Mass Production

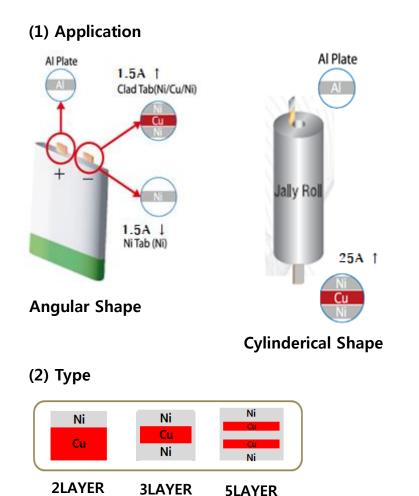
Competitiveness by CAPA(Current CAPA: 50M Cell/month= 10ton/month) No claim & Sales of 600M cell as of 2016

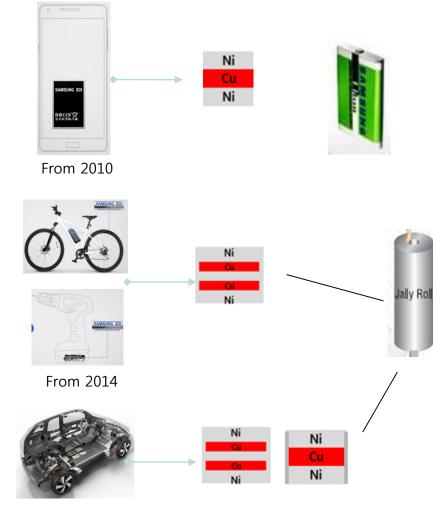


Confidential 秘

Confidential 秘

Lead tap has lower resistance and better thermal conductivity than Nickel tap which makes it better alternative for mobile devices, EV, power tool, and E-bike as they're requiring bigger batter capacity.




0.1t x 4.0w

Component	Cu Ratio	Electrical		Weldability	
Component	Cu Ratio	Resistance (×10⁻ ⁸ Ω•m)	Resistance welding	Laser welding	Ultrasonic welding
Ni/Cu	70%	2.0-2.2	Very Good	Good	Very Good
Ni/Cu/Ni	30%	4.0-4.2	Very Good	Good	Very Good

Lineup of CSC Lead Tab

1. Product

Confidential 秘

From April 2016~

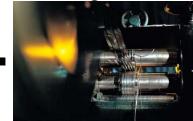
Lineup of CSC Lead Tab

Туре	Component	Layer	Size(mm)	Date of Invention	Note	Application
	Ni/Cu/Ni (Cu30%)	3	0.10*3.0	May 2010	Mass Production	Smart Phone
Angul- ar	Ni/Cu/Ni (Cu30%)	3	0.10*4.0	Apr 2010	Mass Production	Smart Phone
	Ni/Cu/Ni (Cu30%)	3	0.08*4.0	Dec 2015	Thinner	Smart Phone
	Ni/Cu/Ni (Cu50%)	3	0.10*4.0	Jan 2016	Weldability, Low Resistance	Electric tools
	Ni/Cu/Ni/Cu/Ni +Ni Side Plating(Cu30%)	5	0.10*4.0	Dec 2014 Mar 2016	Ni Side Sealing -∆v Loss Protection	E-BIKE, Electric tools, EV
	Ni/Cu(30%)/Ni+Ni Plating	3	0.10*4.0	Jul 2016	Impurity Improvement	EV
Cylin- drical	Ni/Cu (Cu40%)	2	0.10*4.0	Jun 2015	VE Model	E-BIKE, Electric tools
	Cu (Ni Plating/Cu)		0.10*4.0	Mar 2015 (Sep 2016)	Ultra Ductility (Hv 50) Chamfer, Plating	E-BIKE, Electric tools
	Cu (Ni Plating/Cu)		0.10*3.5	Mar 2015 (Sep 2016)	Ultra Ductility (Hv 50) Chamfer, Plating	E-BIKE, Electric tools

Manufacturing Process

4. Rolling

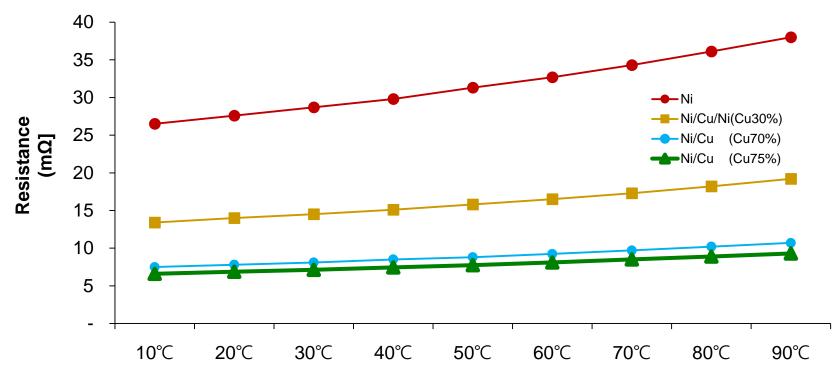
8. Packing


7. Inspection

6. Rewinding

5. Slitting

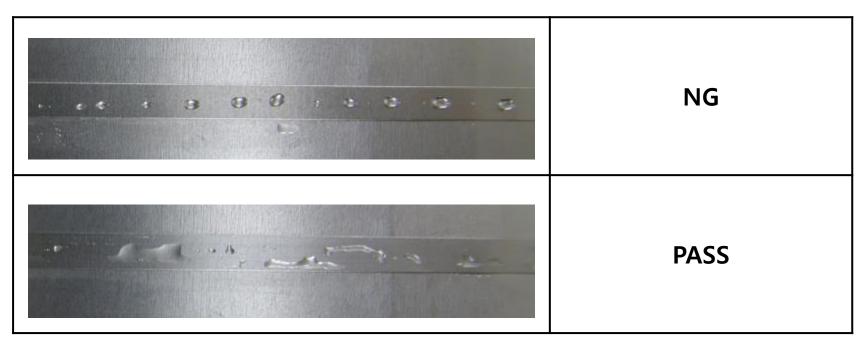
Specification


Ni(0.035)/Cu(0.03)/Ni(0.035) Clad 0.1t x 4.0w

Items			Size(mm)			Chara	octers
Item	Total Thickness	Cu Thickness	Ni Thickness	Width	Burr	Resistance	Dyne Test
SPEC.	0.100 ±0.010mm	30±10 <i>µ</i> m	Bal.	4.0 ±0.1mm	0.010mm MAX	10.0±2.0mΩ	5 MIN
Max.	0.110	40	-	4.1	0.010	12.0	
Min.	0.090	20	-	3.9		8.0	5.0
Device	Micrometer	Image Analyzer	Micrometer	Caliper	Micrometer (Microscope)	HIOKI meter	Dyne test

Increation	Мес	hanical Prope	rties				Compo (N	onents li)				Component (Cu)
Inspection	Tensile Strength	Elongation	Hv (Ni)	Ni+Co	Si	Mg	Cu	Fe	Mn	с	S	Cu
SPEC.	200 N/mm² min.	5.0% Min.	85±15 HV	99.0%	0.3%	0.3%	0.2%	0.4%	0.3%	0.2%	0.01%	99.9MIN
Max.			100		0.3	0.3	0.2	0.4	0.3	0.2	0.01	
Min.	200.0	5.0	70	99.0								99.9
Device	וט	ſM	Hv Tester				IC	:P				ICP

Confidential 秘

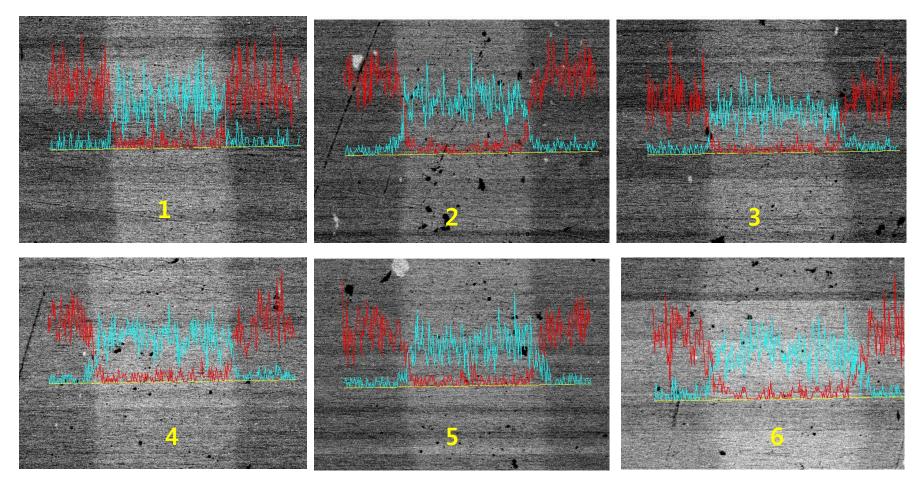

Resistance

Temperature

Materials	Dimensions (mm)	10°C	20°C	30°C	40°C	50°C	60°C	70°C	80°C	90°C
Ni	0.10*3	26.5	27.6	28.7	29.8	31.3	32.7	34.3	36.1	38.0
Ni/Cu/Ni (Cu30%)	0.10*3	13.4	14.0	14.5	15.1	15.8	16.5	17.3	18.2	19.2
Ni/Cu (Cu70%)	0.10*3	7.5	7.8	8.1	8.5	8.8	9.2	9.7	10.2	10.7
Ni/Cu (Cu75%)	0.08*4	6.6	6.8	7.1	7.4	7.8	8.1	8.5	8.9	9.4

Measurement of Surface Tension

Confidential 秘


Formamide (%)	2-Ethoxyethanol (%)	Surface Tension (Dyne)
19.0	81.0	33

- Criterion
 - ① Spread solution and check the liquid surface condition
 - **②** Maintain the initial condition for 60 seconds

Confidential 秘

Technical data for CSC Clad Battery Tap

Diffusion layer of Ni/Cu/Ni Boundary

Ni/Cu/Ni Change of level of diffusion according to heat treatment temperature and time (The bigger number on the pictures means higher temperature and longer time.)

Confidential 秘

RoHS

Test Report	NO. F690501/LF-CTSAYAA10-05482	Issued Date:	February 19, 2010	Page 2 of 4
Sample No.	: AYAA10-05482.001			
Sample Description	: Ni/C1100/Ni			
Item No./Part No.	: Clad Tab			
Comments	: Materials are Ni/C1100/Ni.			
Heavy Metals				

Test Items	Unit	Test Method	MDL	Results
Cadmium (Cd)	mg/kg	With reference to IEC 62321:2008, ICP	0.5	N.D.
Lead (Pb)	mg/kg	With reference to IEC 62321:2008, ICP	5	N.D.
Mercury (Hg)	mg/kg	With reference to IEC 62321:2008, ICP	2	N.D.
Hexavalent Chromium (Cr VI) By boiling water extraction*	**	With reference to IEC 62321:2008	-	Negative

Flame Retardants-PBBs/PBDEs

Test Items	Unit	Test Method	MDL	Results
Monobromobiphenyl	mg/kg	With reference to IEC 62321:2008, GC-MS	5	N.D.
Dibromobiphenyl	mg/kg	With reference to IEC 62321:2008, GC-MS	5	N.D.
Tribromobiphenyl	mg/kg	With reference to IEC 62321:2008, GC-MS	5	N.D.
Tetrabromobiphenyl	mg/kg	With reference to IEC 62321:2008, GC-MS	5	N.D.
Pentabromobiphenyl	mg/kg	With reference to IEC 62321:2008, GC-MS	5	N.D.
Hexabromobiphenyl	mg/kg	With reference to IEC 62321:2008, GC-MS	5	N.D.
Heptabromobiphenyl	mg/kg	With reference to IEC 62321:2008, GC-MS	5	N.D.
Octabromobiphenyl	mg/kg	With reference to IEC 62321:2008, GC-MS	5	N.D.
Nonabromobiphenyl	mg/kg	With reference to IEC 62321:2008, GC-MS	5	N.D.
Decabromobiphenyl	mg/kg	With reference to IEC 62321:2008, GC-MS	5	N.D.
Monobromodiphenyl ether	mg/kg	With reference to IEC 62321:2008, GC-MS	5	N.D.
Dibromodiphenyl ether	mg/kg	With reference to IEC 62321:2008, GC-MS	5	N.D.

Jef-

Jeff Jang / Chemical Lab Mgr

Confidential 秘

Packaging

[Inner Packaging]

2	DH N	

[Outer Packaging]

			4500761	06300	03L03	341	
Ма	t	S.	J71-00	183/	4	Unit	М
Spec NI201,C1100,T							
Qty	aty 798				Vendor 창성		
Pro	Prod.Lot 11.09			.26	0	11090)3

			4500761	06300	3	B01	173		
Ма	t	SJ71-00183A					Unit	М	
Spe	c	NI201,C1100,T0.							
Qty	15	593	3	Vend	Vendor 창		y		
Pro	Prod.Lot 11.09			9.26	.26 0		0110903		

Confidential 秘

SAMSUNG SDI SAMSUNG

LG Chem

Panasonic muRata

INNOVATOR IN ELECTRONICS